韩信点兵怎么写( 三 )


他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名 。韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人 。
汉军本来就信服自己的统帅,这一来更认为韩信是“神仙下凡”、“神机妙算” 。于是士气大振 。
一时间旌旗摇动,鼓声喧天,汉军步步逼近,楚军乱作一团 。交战不久,楚军大败而逃 。
编辑本段题目 在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数 。这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中的解同余式 。
① 有一个数,除以3余2,除以4余1,问这个数除以12余几? 解:除以3余2的数有:2, 5, 8, 11,14, 17, 20, 23… 它们除以12的余数是:2,5,8,11,2,5,8,11… 除以4余1的数有:1, 5, 9, 13, 17, 21, 25, 29… 它们除以12的余数是:1, 5, 9, 1, 5, 9,…. 一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5 。如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是 5+12*整数,整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案. ②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数 。
解:先列出除以3余2的数:2, 5, 8, 11, 14, 17, 20, 23, 26… 再列出除以5余3的数:3, 8, 13, 18, 23, 28… 这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15*整数,列出这一串数是8, 23, 38,…,再列出除以7余2的数 2, 9, 16, 23, 30… 就得出符合题目条件的最小数是23. 事实上,我们已把题目中三个条件合并成一个:被105除余23. 那么韩信点的兵在1000-1500之间,应该是105*10+23=1073人 中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」 答曰:「二十三」 术曰:「三三数剩一置几何?答曰:五乘七乘二得之一百四 。五五数剩一复置几何?答曰,三乘七得之二十一是也 。
七七数剩一又置几何?答曰,三乘五得之十五是也 。三乘五乘七,又得一百零五 。
则可知已,又三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得 。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得 。
」韩信点兵分析 如多一人,即可凑整 。幸存人数应在1000~1100人之间,即得出: 3乘5乘7乘10减1=1049(人) 到了明代,数学家程大位用诗歌概括了这一算法,他写道: 三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知 。
这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了 。
5. 鬼谷算韩信点兵怎么算 计算结果即可
【韩信点兵怎么写】韩信带1500名兵士打仗,战死四五百人,站3人一排,多出2人;站5人一排,多出4人;站7人一排,多出6人 。韩信马上说出人数:1049