论文数据收集怎么写( 二 )


其次是选题确定后,马上要做的不是想我应该怎么去写作,或者在哪抱怨“哎~~郁闷,完全不知道怎么写嘛” 。而是先通过文献查找,看前人在这个选题方面已经做了哪些研究,都是如何做的 。
通过查找文献找到跟选题有关的资料,然后对这些资料进行整理,整理不需要计较参考文献的结论和数据细节等,而是要把每篇文献的研究目的、采用的研究方法、采用的分析方法整理出来 。当然参考文献中的分析方法你可能还完全不懂,但是没关系,你先把这些参考文献中使用的分析方法全部罗列出来,如线性回归、方差分析、均值t检验、logistic回归等,把这些文献中常用的统计方法罗列出来,你需要弄清楚对应关系,即每种分析方法是用来支持和实现什么样的研究目的,以及能够得出什么样的结论,认真阅读文献就能实现这一步 。
第三.通过上一步,你应该朦胧的知道你选题相关的参考文献中常用的统计方法名称,以及这些统计方法能够帮助实现哪些目的,或者得出什么结论,同时也不会对自己的选题那么恐惧和迷茫了,因为可能你的选题已经有前人做过了,你的论文只是“复制”一遍而已了,我说的复制是重复一遍前人的研究 。在这种情况下,可以构思下自己的选题,这一步属于纯理论层面的,你需要将自己的思路具体化,比如要实现什么目的,很自然的需要什么数据分析方法也就能确定了 。
当然很多论文会预先设计一系列待验证的假设,也是在这一步完成,因为你找到的文献中可能会存在矛盾的结论,可能会存在一些你认为的研究缺陷(文献看多了,自然自己就会有想法出来了),提出自己的一系列假设,能够很清楚的指导后面的数据收集和分析 。第四.选题、假设还有研究方法这些经过前面几步都能确定了,接下来就是要考虑具体研究和收集数据的环节了 。
这个环节最重要的也是首要的是弄清楚你的数据应该是什么类型的,通过哪种方法来获取 。其实也容易了,因为前面你已经确定了统计分析方法,而每种方法有它特定的32313133353236313431303231363533e58685e5aeb931333361303035数据类型要求,比如是分类数据(如性别、民族、年级等)、比如连续性数据(如年龄、身高、体重、温度、长度、距离等) 。
分类数据简单通俗点的理解就是这些数字本身是没有意义的,是人为赋予它一定的含义,这些数据之间不存在连续性,且加减乘除没有意义,而连续性数据是数据本身有意义,且能够进行一些加减乘除运算 。确定了所需要的数据类型,就大致能够知道在数据收集时,应该注意的问题 。
比如一份问卷调查,其中应该如何设计问题也就大致清楚了,通常问卷设计时就要考虑两种数据类型的问题,因为不同的选项设计会导致不同的数据类型 。如你设计一个问题的答案选项是“有/没有”、“是/否”这种是属于分类数据,如果你的答案选项是李克特量表式“非常满意----非常不满意”这种,在处理时可以按照分类数据,只能统计出一些百分比,也可能将其按照连续数据如12345打分形式,这样可以求均值,可以做很多其他多元统计分析 。
因此这一步确定数据类型很关键,如果数据类型弄错的话,则收集的数据完全无用 。第五.具体收集数据过程,不细说了,收集回来之后 就是数据的录入 。
记住一定要录入原始的数据,而不是经过加减整理汇总后的数据 。数据录入格式也是有要求的,一般大致同样的情况下,都是一行代表一个个案或者一份问卷的数据,而一列对应表示的是问卷中的一个问题,即变量 。
因此数据录入完成后,应该是有多少样本数据,就有多少行,数据中包含多少个指标,那就有多少列 。第六.这一步才是你应该开始头疼的数据分析不会了怎么办 。