给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ).似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中 。在教科书中,似然常常被用作“概率”的同义词 。
但是在统计学中,二者有截然不同的用法 。概率描述了已知参数时的随机变量的输出结果;似然则用来描述已知随机变量输出结果时,未知参数的可能取值 。
例如,对于“一枚正反对称的硬币上抛十次”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对于“一枚硬币上抛十次,落地都是正面向上”这种事件,我们则可以问,这枚硬币正反面对称的“似然”程度是多少 。
9.似然函数是什么东西,怎么理解这个概念统计学中,似然函数(),或,是一种关于统计模型参数的函数 。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:
L(θ|x)=P(X=x|θ).
似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中 。在教科书中,似然常常被用作“概率”的同义词 。但是在统计学中,二者有截然不同的用法 。概率描述了已知参数时的随机变量的输出结果;似然则用来描述已知随机变量输出结果时,未知参数的可能取值 。例如,对于“一枚正反对称的硬币上抛十次”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对于“一枚硬币上抛十次,落地都是正面向上”这种事件,我们则可以问,这枚硬币正反面对称的“似然”程度是多少 。
【怎么写似然函数】
文章插图